frp/vendor/github.com/klauspost/reedsolomon/galoisAvx512_amd64.go
2019-03-17 17:09:54 +08:00

185 lines
5.8 KiB
Go

//+build !noasm
//+build !appengine
//+build !gccgo
// Copyright 2015, Klaus Post, see LICENSE for details.
// Copyright 2019, Minio, Inc.
package reedsolomon
//go:noescape
func _galMulAVX512Parallel82(in, out [][]byte, matrix *[matrixSize82]byte, addTo bool)
//go:noescape
func _galMulAVX512Parallel84(in, out [][]byte, matrix *[matrixSize84]byte, addTo bool)
const (
dimIn = 8 // Number of input rows processed simultaneously
dimOut82 = 2 // Number of output rows processed simultaneously for x2 routine
dimOut84 = 4 // Number of output rows processed simultaneously for x4 routine
matrixSize82 = (16 + 16) * dimIn * dimOut82 // Dimension of slice of matrix coefficient passed into x2 routine
matrixSize84 = (16 + 16) * dimIn * dimOut84 // Dimension of slice of matrix coefficient passed into x4 routine
)
// Construct block of matrix coefficients for 2 outputs rows in parallel
func setupMatrix82(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize82]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut82 {
offset -= dimIn*dimOut82 - 1
}
}
}
}
// Construct block of matrix coefficients for 4 outputs rows in parallel
func setupMatrix84(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize84]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut84 {
offset -= dimIn*dimOut84 - 1
}
}
}
}
// Invoke AVX512 routine for 2 output rows in parallel
func galMulAVX512Parallel82(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset int) {
done := len(in[0])
if done == 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut82
if outputEnd > len(out) {
outputEnd = len(out)
}
matrix82 := [matrixSize82]byte{}
setupMatrix82(matrixRows, inputOffset, outputOffset, &matrix82)
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel82(in[inputOffset:inputEnd], out[outputOffset:outputEnd], &matrix82, addTo)
done = (done >> 6) << 6
if len(in[0])-done == 0 {
return
}
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ {
if c < len(matrixRows[iRow]) {
mt := mulTable[matrixRows[iRow][c]][:256]
for i := done; i < len(in[0]); i++ {
if c == 0 { // only set value for first input column
out[iRow][i] = mt[in[c][i]]
} else { // and add for all others
out[iRow][i] ^= mt[in[c][i]]
}
}
}
}
}
}
// Invoke AVX512 routine for 4 output rows in parallel
func galMulAVX512Parallel84(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset int) {
done := len(in[0])
if done == 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut84
if outputEnd > len(out) {
outputEnd = len(out)
}
matrix84 := [matrixSize84]byte{}
setupMatrix84(matrixRows, inputOffset, outputOffset, &matrix84)
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel84(in[inputOffset:inputEnd], out[outputOffset:outputEnd], &matrix84, addTo)
done = (done >> 6) << 6
if len(in[0])-done == 0 {
return
}
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ {
if c < len(matrixRows[iRow]) {
mt := mulTable[matrixRows[iRow][c]][:256]
for i := done; i < len(in[0]); i++ {
if c == 0 { // only set value for first input column
out[iRow][i] = mt[in[c][i]]
} else { // and add for all others
out[iRow][i] ^= mt[in[c][i]]
}
}
}
}
}
}
// Perform the same as codeSomeShards, but taking advantage of
// AVX512 parallelism for up to 4x faster execution as compared to AVX2
func (r reedSolomon) codeSomeShardsAvx512(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
outputRow := 0
// First process (multiple) batches of 4 output rows in parallel
for ; outputRow+dimOut84 <= len(outputs); outputRow += dimOut84 {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow)
}
}
// Then process a (single) batch of 2 output rows in parallel
if outputRow+dimOut82 <= len(outputs) {
// fmt.Println(outputRow, len(outputs))
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow)
}
outputRow += dimOut82
}
// Lastly, we may have a single output row left (for uneven parity)
if outputRow < len(outputs) {
for c := 0; c < r.DataShards; c++ {
if c == 0 {
galMulSlice(matrixRows[outputRow][c], inputs[c], outputs[outputRow], &r.o)
} else {
galMulSliceXor(matrixRows[outputRow][c], inputs[c], outputs[outputRow], &r.o)
}
}
}
}